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ABSTRACT 

 

This article deals with model averaging as an alternative regression technique for high-dimensional data 

especially in chemometrics where statistical approach is used to extract any information contained in a 

chemical dataset. Our simulation study indicated that model-averaging (MA) works better in high-correlated 

data than in low-correlated data. The result also designated MA with weighting procedure based on Mallows’ 

Cp and Jackknife criteria produce better predictions compared to Akaike information criterion (AIC)-based of 

weight if the candidate models are constructed by randomly grouping the covariates. Moreover, the prediction 

performance tent to increase along with the number of variables in a candidate model. We illustrated the 

methods to regress the concentration of curcuminoid in curcumin specimen as a function of their spectra 

determined by Fourier Transform Infra-red (FTIR) instrument. 

Keywords: AIC, Calibration model, Curcumoid, FTIR, High-dimensional data, Jackknife ,Mallows Cp, Model 

averaging. 

 

I. INTRODUCTION 

 

A dataset resulted from spectroscopy such as Near 

Infra Red (NIR) and Fourier Transform Infra-Red 

(FTIR) is a kind of chemical dataset which represents 

the quantity of heat absorbed or emitted by certain 

substance over several wave lengths.  Its commonly 

used to quantify concentration of a certain substance 

containing in a sample. 

 

Calibration model aims at building a functional 

relationship between concentration of interest 

component in certain specimen and a huge number 

of absorbencies which is much bigger than the 

number of observations. In this condition, the 

classical regression approach such as ordinary least 

squares (OLS) is no longer suitable to be 

implemented due to the presence of high multi-

collinearity among the explanatory variables.   

 

In calibration models some well-known approaches 

have been proposed so far including continum 

regression [1] and Bayesian approach [2].  Sparse 

alternatives using random effect approach for 

calibration model has also been studied by Gusnanto 

and Pawitan [3]. 

 

This article considered an alternative approach 

where the final model relies on a weighted average 

of a set of approximation models known as model 

averaging (MA). There are two well-known points of 

view in MA namely Bayesian MA (BMA) and 

Frequentist MA (FMA). While the former computes 

posterior probabilities for each of candidate models 
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and use them as weights [4], the latter does it based 

on certain criteria such as Akaike Information 

Criteria (AIC) [5], Mallows [6] and Jackknife [7].  

Application of MA in calibration data which has not 

popular yet.  In other bioinformatic problems, 

however, it has been widely appeared in many fields 

of interest such as in genetic problem by 

Rahardiantoro et al. [8], supersaturated experimental 

design by Salaki et al. [9] and public health by Ando 

and Li [10].  

 

Mallows model-averaging (MMA) and Jackknife 

model-averaging (JMA) are least squares model-

averaging approaches in which the construction of 

candidate models use nested modelling. In 

application to high-dimensional data such as 

calibration model the setting is impossible to be 

applied. Factually, computational complexity will 

rapidly increase as the number of predictors becomes 

large.  Furthermore, in order to apply the JMA to 

high-dimensional data, Ando and Li [10] modified 

JMA in way of preparing candidate models by taking 

marginal correlation between independent variable 

and response into account.  

 

In this study, we prepare the candidate models by 

grouping randomly the variables into certain number 

of subsets. This mode has been conducted previously 

for instance by Ramadhan et al. [11] with AIC as the 

weight criterion in a simulation study.  We use the 

same approach in comparing with Mallows and 

Jackknife weight in a simulation study before 

applying the best of them in a real dataset.  Thus, we 

employ MA for building calibration model of a 

dataset from FTIR to make comparison of AIC MA 

(AMA), MMA and JMA performances.   

 

The rest of this article is organized as follow. Section 

II discusses about methods and material. The next 

Section III details results and discussion and the last 

section is used for some conclusion statements. 

 

 

II.  METHODS AND MATERIAL 

 

A. Model Averaging 

Let X be a matrix of spectra determined by FTIR 

instrument with   wavelengths (variables) and n 

observation. The matrix size is     with    . 

The intercept term is dropped by centering each 

variable to have zero mean. Suppose y be an n-vector 

of curcuminoid concentration detected by High 

Performance Liquid Chromatography served as a 

response variable. Regression model parameters is 

represented as a p-vector β. The model of response y 

can be written as 

        (1) 

where                .  We assume   an n-vector 

of error term following the normal distribution with 

mean zero and variance σ2.  Least squares (LS) 

estimate of regression parameters β can be written as 

  ̂              (2) 

In case of           is not invertible that LS 

methods cannot be implemented. 

While selection model chooses a single best model 

from several competing ones as the final result, 

model averaging employs all of them by weighted 

averaging those models to tackle uncertainty model 

containing in the prior approach [12].  There are 

three important aspects in the approach, i.e. 

construction and estimation candidate models and 

criteria of weight selection, as described bellow. 

Construction and Estimation of Candidate Models 

This section describes development and estimation of 

candidate models.  Following the settings of Ando 

and Li [10], we rewrite the equation (1) as 

   ∑     
 
     . (3) 

The number of variables in a subset is limited to a 

value that is less than the number of observations.  

In order to develop K candidate models we separate 

randomly the set {          } into K subsets.  For 

simplicity, those subsets are set to have the same 

cardinal number, that is 
 

 
 elements.  As we 

employed least squares as the estimation methods, 
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we restricted 
 

 
  .  Thus, we have a sequence of 

candidate linear models             where the 

candidate model    can be stated as: 

                  (4) 

Where                ;      is a design matrix of 

model    with size    

 
        is a  

 
 -vector of 

parameter associated with      and 

                .  

If  ̂     is the LS prediction of   based on model    

then MA prediction  ̂    of equation (3) can be 

formulated as: 

  ̂    ∑    ̂    
 
     

   = ∑     
            

      
      

     

  = ∑   
 
             (5) 

where      ∑   
 
      is the corresponding hat 

matrix and   is a k-vector of weight such that 

∑   
 
      and    is weight term corresponding to 

candidate model   .  

 

Weight Selection Criteria 

In model averaging where all competing models are 

considered to contribute to final model, weight 

criteria play important role to determine the 

prediction performance.  AIC criterion was firstly 

introduced by Burnham & Anderson [5] which is 

based on AIC score. For a candidate model    with 

      length of parameter vector and log likelihood 

function   , the weight    is defined as 

    
           

∑             
   

   (6) 

Here,                is a measure of candidate 

model    relative to the best model that is model 

with minimum AIC (      ).  Consequently, the 

better a candidate model the bigger the weight to be 

assigned in it.  

 

The MMA which is proposed by Hansen [6] select 

the weight of averaging by minimizing a Mallow Cp 

criterion  

      ‖   ̂   ‖    ̂     (7) 

where                      denotes the 

number of covariates in candidate model   .  The 

selected weight is the weight vector  ̂  that 

minimizes the criteria (7), that is 

 ̂    ̂   ̂     ̂                   

where             ∑      
     . 

Jackknife criteria of weight selects the weight using 

the leave-one-out cross-validation (LOOCV) or 

Jackknife as previously used in Hansen and Racine 

[7].   

 

Following their setting, we define  ̃  

  ̃ 
    ̃ 

      ̃ 
     as an  -vector.  Here,  ̃ 

   

denotes the predicted value of the  th observation 

resulted from a training dataset developed by 

deleting the  th observation         and based on 

model      Referring to the hat matrix    in 

equation (5), we define  ̃                  is 

an  -diagonal matrix where the  th diagonal 

element equals to           ;     is the  th 

diagonal element of   .  The leave-one out predictor 

is formulated as 

 ̃  ∑    ̃ 
 
     ∑    ̃  

 
      ̃      

where  ̃    ∑    ̃ 
 
   .   

The sum of squared residuals of leave-one-out 

predictor is used to form the cross-validation 

criterion        ‖   ̃‖  ‖   ̃    ‖
 
 (8) 

The selected weight is the weight vector  ̂  that 

minimizes the criteria (8), that is 

 ̂    ̂   ̂     ̂                  . 

B. Data 

In this section we explain about the simulated data 

and a real spectroscopy dataset to build a calibration 

model. 

 

Simulated Data 

As the spectroscopy dataset is commonly a high-

dimensional data with high correlation between its 

covariates, we generate a dataset containing the 
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sample size  = 300 and  =1000 predictors.  As much 

as 200 predictors having index               

        are set as the true predictors by setting 

    . The covariance matrix is defined as   [   ] 

where  

     {
         
             

. 

In order to investigate how the prediction 

performance behaves, we varied the error terms 

generated from normal with mean 0 and variance 0.1, 

0.3 and 0.5. 

 

Spectroscopy Dataset 

In this article, we employ a spectroscopy dataset of 

curcuminoid active compound in curcuma specimen 

obtained from the observation of curcuma herbs.  The 

dataset is produced by the Post Graduate Research 

Team 2003-2005 which is a collaboration between the 

Statistics Department with Biopharmaca Study Centre 

Bogor Agricultural University, Indonesia as 

previously described in [1] and [2].  The dataset is 

resulted from calibration of FTIR instrument with 

spectra from curcuma and comprised of 20 

observations measured in 1866 different wavelengths.  

It consequently creates a covariate matrix of 20 rows 

and 1866 columns. 

 

III. RESULTS AND DISCUSSION 

 

This section is dedicated to present the result of both 

simulation study and calibration model of curcumin 

dataset to compare the prediction performance 

of AMA, MMA and JMA. 

 

A. Simulation Study 

In order to bring out the performance of model 

averaging by using the three different weight criteria, 

we evaluate their prediction in term of root mean 

squared error prediction (RMSEP).  We vary the 

number of covariates in a candidate model in several 

value to investigate, how the quantity influences the 

performance of MA.   

We employ 5-fold cross validation in this study.  

After randomly rearranging the order of observation, 

we split the data into 5 equally part each containing 

300/5=60 observations.  Thus, when the observations 

in the single  -fold is deleted-out to serve as 

validation dataset, the remain folds are used for the 

training data to build a model to be evaluated by 

using the corresponding validation data.   

The step-by-step of model averaging can be itemized 

as below: 

Step 1. Prepare some candidate models by 

randomly dividing all the independent 

variables in training set into   groups for 

 =100, 50, 25, 10 and 5.  Consequently, the 

corresponding number of covariates in a 

candidate model are varied as   = 10, 20, 

40, 100 and 200.  Thus, if the number of 

covariates in a candidate model is set to 200, 

we have a sequence of candidate models 

       .  The variables belong to group   

are used to build a design matrix for 

candidate model    .  

Step 2. Estimate the parameters of each of   

candidate models  ̂     ̂       ̂    by 

using least squared method and then 

compute the corresponding prediction 

 ̂     ̂       ̂    by using the validation 

dataset. 

Step 3. Select weight term    for the  -candidate 

model by using AIC, Mallows and jackknife 

criteria separately. 

Step 4. Computing the prediction of model 

averaging  ̂     ∑    ̂    
 
   . 

Step 5. Repeat the step 1 until 4 by using the next 

fold and so on until fold 5. 

Step 6. Compute the RMSEP to represent the 

prediction performance,  

        
 

   
∑      ̂     

 
    

    

 Where     and  ̂      represent the actual 

and predicted data of the  -th observation 

respectively  
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The average of RMSEP of model averaging with 

different weight criteria are listed in Table I.  

According to the table, model averaging performance 

is significantly influenced by the criteria of weight 

selection as well as the number of covariates in a 

candidate model.  The results in all type of error 

variance show the same trend, that average of RMSEP 

of all types of weight increased as the    gets higher 

and then decreases at   =200.   

Table 1. Mean Of Rmsep Based On 3 Types Of Ma 

Over 500 Runs 

   
Model Averaging 

AMA MMA JMA 

       

10 7.673 2.380 2.334 

20 4.959 2.221 2.231 

40 4.189 2.212 2.208 

100 3.376 2.126 2.126 

200 6.428 3.180 3.180 

       

10 6.265 2.214 2.154 

20 4.920 2.164 2.151 

40 3.959 2.232 2.231 

100 3.326 2.019 2.019 

200 5.669 2.853 2.853 

       

10 7.111 2.543 2.463 

20 5.211 2.308 2.309 

40 4.401 2.383 2.383 

100 3.680 2.295 2.295 

200 5.510 3.215 3.215 

 

We can infer that the best performance of a model 

averaging approach reaches the best when the 

number of covariates in a candidate model is set to 

  =100.   

 

Figure 1.  Boxplots of RMSEP of AMA, MMA and 

JMA. 

 

 

Figure 2. Plot of validation data versus prediction data 

of the AMA, MMA and JMA 

From the Figure 1, we can see the boxplot of RMSEP 

of the three different weights of MA.  The 

performance resulted from MA have the same trend, 

however, the variance of RMSEPs stemming from 

AMA seem higher than the two others.  According to 

the picture we can infer that MMA and JMA are more 

recommended to be used as the alternative in 

modelling the high-dimensional data. 

 

Figure 2 shows that the correlation value between 

validation data and prediction data is significantly 

support the other remarks. As printed in the figure, 

the correlation value (ρ) for each method equals to 

0.99.  The correlation value shows that the trend of 

predicted data works along with of observed data.  
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According to Figure 3 where the plot of residuals are 

randomly scattered and making a relative symmetric 

band. 

 

Figure 3. Plots of Residuals versus Prediction Data 

 

B. Calibration Model of Spectroscopy Dataset 

Figure 4., displays the spectroscopy data of 

curcuminoid after being centred on their associated 

variables means.  In this analysis, we set the number 

of candidate models to 310 each with 6 variables that 

the OLS method can be implemented.  The intercept 

term is dropped as the data have been firstly centred 

to have mean zero.  

 

Our result show that RMSEP value resulted from 

AMA, MMA and JMA equal to 0.748, 0.669 and 0.664 

respectively.  The results show similar trend with the 

simulation result that the MMA and JMA outperform 

AIC weight-based model averaging. In term of 

RMSEP. 

Figure 4.  FTIR spectra plot of 20 batches of 

curcumoid 

The correlation between validation versus its 

corresponding prediction data equal to 0.879 and 

0.849 respectively.  The higher the correlation value 

between covariates the better the model performance 

resulted by model averaging.  Moreover, the value 

shows that trend of observed data works along with 

its corresponding predicted data and guarantees that 

the resulted prediction model fits the data. 

 

IV. CONCLUSION 

 

Prediction performance of several weight criteria of 

model averaging has been compared and applied in 

calibration model. Based on our simulation study, 

model averaging with Mallows  and Jackknife criteria 

of weight outperform one with AIC weight.  The 

result also shows that the number of covariate in a 

candidate model significantly determines the 

prediction performance.  In spectroscopy dataset that 

suffers from multi-collinearity, model averaging can 

be employed as an alternative approach to improve 

the prediction performance in calibration model. 
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